Stable Low Order Nonconforming Quadrilateral Finite Elements for the Stokes Problem

نویسندگان

  • Yongdeok Kim
  • Seki Kim
چکیده

Stability result is obtained for the approximation of the stationary Stokes problem with nonconforming elements proposed by Douglas et al [1] for the velocity and discontinuous piecewise constants for the pressure on quadrilateral elements. Optimal order H and L error estimates are derived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stabilized Nonconforming Quadrilateral Finite Element Method for the Generalized Stokes Equations

In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.

متن کامل

A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations

Recently, Douglas et al. [4] introduced a new, low-order, nonconforming rectangular element for scalar elliptic equations. Here, we apply this element in the approximation of each component of the velocity in the stationary Stokes and Navier–Stokes equations, along with a piecewiseconstant element for the pressure. We obtain a stable element in both cases for which optimal error estimates for t...

متن کامل

A 3d Conforming-nonconforming Mixed Finite Element for Solving Symmetric Stress Stokes Equations

We propose a 3D conforming-nonconforming mixed finite element for solving symmetric stress Stokes equations. The low-order conforming finite elements are not inf-sup stable. The low-order nonconforming finite elements do not satisfy the Korn inequality. The proposed finite element space consists of two conforming components and one nonconforming component. We prove that the discrete inf-sup con...

متن کامل

Inf-sup Stable Nonconforming Finite Elements of Higher Order on Quadrilaterals and Hexahedra

Abstract. We present families of scalar nonconforming finite elements of arbitrary order r ≥ 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r − 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recover...

متن کامل

Numerical analysis and a-posteriori error control for a new nonconforming linear finite element on quadrilaterals

Starting with a short introduction of the new nonconforming linear quadrilateral P̃1-finite element which has been recently proposed by Park ([13, 14]), we examine in detail the numerical behaviour of this element with special emphasis on the treatment of Dirichlet boundary conditions, efficient matrix assembly, solver aspects and the use as Stokes element in CFD. Furthermore, we compare the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002